US 10,599,560 B2

19

the API calls 724 provided by the mobile operating system
such as operating system 714 to facilitate functionality
described herein.

The applications 720 may use built-in operating system
functions (e.g., kernel 728, services 730 and/or drivers 732),
libraries 716, or frameworks/middleware 718 to create user
interfaces to interact with users of the system. Alternatively,
or additionally, in some systems, interactions with a user
may occur through a presentation layer, such as the presen-
tation layer 744. In these systems, the application/module
“logic” can be separated from the aspects of the application/
module that interact with a user.

Some software architectures use virtual machines. In the
example of FIG. 8, this is illustrated by a virtual machine
748. The virtual machine 748 creates a software environ-
ment where applications/modules can execute as if they
were executing on a hardware machine (such as the machine
800 of FIG. 9, for example). The virtual machine 748 is
hosted by a host operating system (e.g., operating system
714) and typically, although not always, has a virtual
machine monitor 746, which manages the operation of the
virtual machine 748 as well as the interface with the host
operating system (i.e., operating system 714). A software
architecture executes within the virtual machine 748 such as
an operating system (OS) 750, libraries 752, frameworks
754, applications 756, and/or a presentation layer 758. These
layers of software architecture executing within the virtual
machine 748 can be the same as corresponding layers
previously described or may be different.

FIG. 9 is a block diagram illustrating components of a
machine 800, according to some example embodiments,
configured to read instructions from a machine-readable
medium (e.g., a machine-readable storage medium) and
perform any one or more of the methodologies discussed
herein. In some embodiments, the machine 800 is similar to
the ECS device 101. Specifically, FIG. 9 shows a diagram-
matic representation of the machine 800 in the example form
of a computer system, within which instructions 816 (e.g.,
software, a program, an application, an applet, an app, or
other executable code) for causing the machine 800 to
perform any one or more of the methodologies discussed
herein may be executed. As such, the instructions 816 may
be used to implement modules or components described
herein. The instructions transform the general, non-pro-
grammed machine into a particular machine programmed to
carry out the described and illustrated functions in the
manner described. In alternative embodiments, the machine
800 operates as standalone device or may be coupled (e.g.,
networked) to other machines. In a networked deployment,
the machine 800 may operate in the capacity of a server
machine or a client machine in a server-client network
environment, or as a peer machine in a peer-to-peer (or
distributed) network environment. The machine 800 may
comprise, but not be limited to, a server computer, a client
computer, a personal computer (PC), a tablet computer, a
laptop computer, a netbook, a set-top box (STB), a personal
digital assistant (PDA), an entertainment media system, a
cellular telephone, a smart phone, a mobile device, a wear-
able device (e.g., a smart watch), a smart home device (e.g.,
a smart appliance), other smart devices, a web a network
router, a network switch, a network bridge, or any machine
capable of executing the instructions 816, sequentially or
otherwise, that specify actions to be taken by the machine
800. Further, while only a single machine 800 is illustrated,
the term ‘machine’ shall also be taken to include a collection

10

15

20

25

30

35

40

45

50

55

60

65

20

of machines that individually or jointly execute the instruc-
tions 816 to perform any one or more of the methodologies
discussed herein.

The machine 800 may include processors 810, memory
830, and input/output (1/O) components 850, which may be
configured to communicate with each other such as via a bus
802. In an example embodiment, the processors 810 (e.g., a
Central Processing Unit (CPU), a Reduced Instruction Set
Computing (RISC) processor, a Complex Instruction Set
Computing (CISC) processor, a Graphics Processing Unit
(GPU), a Digital Signal Processor (DSP), an Application
Specific Integrated Circuit (ASIC), a Radio-Frequency Inte-
grated Circuit (RFIC), another processor, or any suitable
combination thereof) may include, for example, a processor
812 and a processor 814 that may execute the instructions
816. The term “processor” is intended to include multi-core
processor that may comprise two or more independent
processors (sometimes referred to as “cores”) that may
execute instructions contemporaneously. Although FIG. 9
shows multiple processors, the machine 800 may include a
single processor with a single core, a single processor with
multiple cores (e.g., a multi-core processor), multiple pro-
cessors with a single core, multiple processors with mul-
tiples cores, or any combination thereof.

The memory/storage 830 may include a memory, such as
a main memory 832, a static memory 834, or other memory,
and a storage unit 836, both accessible to the processors 810
such as via the bus 802. The storage unit 836 and memory
832, 834 store the instructions 816 embodying any one or
more of the methodologies or functions described herein.
The instructions 816 may also reside, completely or par-
tially, within the memory 832, 834, within the storage unit
836, within at least one of the processors 810 (e.g., within
the processor’s cache memory), or any suitable combination
thereof, during execution thereof by the machine 800.
Accordingly, the memory 832, 834, the storage unit 836, and
the memory of processors 810 are examples of machine-
readable media 838.

As used herein, “machine-readable medium” means a
device able to store instructions and data temporarily or
permanently and may include, but is not limited to, random-
access memory (RAM), read-only memory (ROM), buffer
memory, flash memory, optical media, magnetic media,
cache memory, other types of storage (e.g., Erasable Pro-
grammable Read-Only Memory (EEPROM) and/or any
suitable combination thereof. The term “machine-readable
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) able to store the instructions
816. The term “machine-readable medium” shall also be
taken to include any medium, or combination of multiple
media, that is capable of storing instructions (e.g., instruc-
tions 816) for execution by a machine (e.g., machine 800),
such that the instructions, when executed by one or more
processors of the machine 800 (e.g., processors 810), cause
the machine 800 to perform any one or more of the meth-
odologies described herein. Accordingly, a “machine-read-
able medium” refers to a single storage apparatus or device,
as well as “cloud-based” storage systems or storage net-
works that include multiple storage apparatus or devices.
The term “machine-readable medium” excludes signals per
se.

The input/output (I/0) components 850 may include a
wide variety of components to receive input, provide output,
produce output, transmit information, exchange informa-
tion, capture measurements, and so on. The specific input/
output (I/O) components 850 that are included in a particular



